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The rising adoption of immersive environments presents a significant challenge in balancing service providers’ desire to collect user
behaviour data with users’ privacy concerns. Striking a balance between data collection and privacy protection becomes crucial in this
context. As these technologies become more integrated into everyday life, the need for robust and privacy-preserving technologies
grows to ensure users’ trust and confidence while enabling service enhancements and targeted advertising. Our research explores
implementing differential privacy algorithms in VR applications to enable statistical analysis of 3D spatial motion data while protecting
user anonymity and evaluating the balance between data utility and privacy. Two datasets were used to conduct the experiments.
First is an indoor activities data with simulated agents (N = 7). The second is a public 3D motion capture dataset of users playing VR
sport games (N = 16). We assessed the efficacy of DP on both the original 3D spatial data and its cumulative heat map representation.
Experimental results reveal that our approach effectively preserves data utility (with threshold 𝑅𝑆𝐸 ≤ 1) while reducing the accuracy
of the re-identification attack model from 93.89% to 48.03% (through window-slicing) and from 96.53% to 55.37% (through heat
map conversion). This study underscores the utility of the DP algorithm in the context of 3D body motion data, highlighting broad
applicability across diverse VR contexts while ensuring user anonymity.
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1 INTRODUCTION

The global VR market was valued at 28 billion US dollars in 2022 and is projected to grow at a compound annual growth
rate (CAGR) of 13% from 2023 to 2030 [1]. Leading tech companies invest heavily in VR, with Meta introducing its
cutting-edge VR headset, the Meta Quest Pro [3], and reports suggesting that Apple has a team of 3,000 employees
dedicated to their upcoming VR headset [16]. Consumer interest in applications such as gaming, fitness, and social
experiences has steadily grown over the past decade. Notably, during the COVID-19 pandemic [2], VR has played a
pivotal role in driving innovation in fields like art, healthcare, and education.

As VR devices become more widely adopted, researchers express increasing concerns about privacy issues in many
VR applications [6, 9, 19]. On one hand, VR technology is rapidly evolving, and VR device companies understandably
seek to continuously monitor user behaviour data to improve user experiences and the performance of VR systems [23].
On the other hand, it can be argued that the privacy risks associated with VR applications are potentially more severe
than those of mobile applications. This is due to the extensive collection of users’ personal information by various
input/output devices and sensors [4]. For example, the seemly standard data from VR headsets and controllers can
inadvertently disclose users’ biometric details, such as height and body shape [26]. Furthermore, the dynamic data
captured by motion sensors can even unveil users’ preferences and opinions towards virtual content, as evidenced
by the analysis of eye-tracking data [14]. Moreover, recent studies have revealed that users can be identified with an
accuracy exceeding 90% when compared to a database of over 50,000 individuals, based on just 100 seconds of motion
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recorded during VR gaming sessions [24]. Striking a delicate balance between data collection and privacy preservation
is imperative to enable the ongoing enhancement of VR technologies while respecting users’ privacy and security.

Differential privacy (DP) is a mathematical framework that provides a strong guarantee of privacy by allowing data
to be analyzed without revealing sensitive information about any individual in the dataset [12]. DP has been applied
across diverse domains, such as concealing demographic census data [15] and safeguarding the privacy of Uber drivers
and riders during analysis [20]. However, there is limited research on the use of DP in VR applications. Nair et al. [13]
proposed the pioneering concept of "VR Incognito Mode", which uses DP to obscure sensitive user data attributes, such
as user height, wingspan, or room size. However, it is unclear how to apply DP on 3D body motion data, such as head
or hand movement, which has been shown vulnerable to re-identification attacks [24, 26].

To address this knowledge gap, we present two simple yet effective approaches to apply DP mechanism on 3D body
motion data from VR applications. Our goal is to safeguard user privacy by preventing re-identification attack while
retaining valuable statistical information, such as the average head and hand movements of users. This data is vital for
enhancing the gaming experience and gaining insights into user preferences in virtual social or shopping spaces. Our
first approach involves the direct application of DP onto the 3D body motion data while our second approach transforms
the spatial data into 2D heat maps before applying DP. We evaluated the effectiveness of our privacy protection method
using two VR datasets. The first dataset emulates indoor activities collected by the VirtualHome simulator [27], while
the second dataset captures user motion in a VR sports game [21]. The experimental findings demonstrate that our
method successfully maintains data utility (with an RMSE threshold set to 1) while diminishing the accuracy of the
re-identification attack model from 93.89% to 48.03% (via window-slicing) and from 96.53% to 55.37% (through heat map
conversion), indicating that heat map conversion is more effective.

Contribution

• We conduct experiments to apply Differential Privacy (DP) to 3D body motion data, aiming to protect user
privacy while preserving data utility.

• We suggest a novel approach of transforming 3D body motion data into heat maps prior to applying DP, which
enhances the efficacy of DP.

• We assess our method using both synthetic and real-world body motion datasets, specifically focusing on their
resilience against re-identification attacks.

Our findings indicate that, despite the wealth of data being collected, user privacy can be preserved while still
permitting data analysis for various purposes within an immersive environment. Given the rapid evolution of VR and
sensor technologies, and the increasing collection of user behaviour data for analysis, there is a pressing need for more
research dedicated to privacy-preserving approaches, such as DP.

2 RELATEDWORK

Recent studies have revealed the ease with which attackers can identify [22, 25, 29–32, 40] and create profiles of
VR users [28, 34] using just a few minutes of data streaming. Furthermore, these studies have highlighted that the
extent and magnitude of data collection in VR surpass the capabilities of current internet platforms. The immersive
nature of VR contributes to these vulnerabilities, as it can make users more susceptible to self-disclosure[33] and social
engineering [5].
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In contrast to current Internet platforms, where users have options like Tor, VPNs, proxies, and incognito mode to
protect against user tracking and profiling, there is a lack of equivalent and robust defense mechanisms to address
the unique threats in VR. Existing literature provides a fragmented collection of privacy defenses that are still in the
proof-of-concept stage, with limited application in commercial-grade solutions. Moreover, industry practices in the VR
domain are not reassuring. Vulnerabilities in VR devices have been identified, some developers disregard their own
privacy policies, and updates tend to prioritize increased data collection [35].

In our threat model, privacy breaches occur when attackers gather and infer sufficient information to consistently
identify and extensively profile a user across multiple usage sessions in VR applications (referred to as tracking).
Attackers achieve identification (i) by distinguishing the user from others in a unique manner and (ii) profiling users
by associating unwarranted information with their characteristics, such as demographics, preferences, and browsing
history [34].

For example, two primary entities pose threats to user privacy in this context: the developers of client-side appli-
cations running on VR devices (referred to as Application Adversaries [23]) and content creators (known as Content
Adversaries [5]). Content adversaries have the ability to create immersive experiences that incorporate misleading,
manipulative, and deceptive content. On the other hand, application adversaries can access input data through system
APIs and manipulate the rendered frames and signals sent to VR devices, as well as the information streamed to external
servers. While one server-side, server adversaries may have control over the external server. As a result, they possess
the ability to manipulate and process the networked data they receive before streaming it to other users’ devices in any
desired manner.

We argue that without a well-designed privacy protection technique, users’ privacy is threatened by both client-side
and server-side adversaries. In other words, these adversaries have the capability to access users’ private data and easily
re-identify them.

3 USE CASES

Before diving into the methodology, we would like to introduce two use cases of our proposed privacy protection
approach.

Case 1: VR Gaming. In VR gaming, the goal of privacy protection is to secure players’ personal and sensitive information
while providing a safe and enjoyable gaming experience. However, developers, such as gaming companies, often collect
user data to analyze gameplay and enhance the gaming experience.

Consider a VR archery game where the objective is to hit the bull’s eye. The bow is attached to the user’s left hand,
while the right hand draws the string, and arrows are loaded by moving the bow towards a virtual quiver. Developers
may enhance the gaming experience by analyzing players’ behaviour using body movement data collected from sensors
on VR devices. This data can encompass eye tracking, hand controller positioning, and derived features like user height,
reaction speed, and arm stability. Without adequate privacy protection, it could be possible to re-identify a specific user
from this data. However, it’s important to note that developers may not necessarily need precise body movement data
from each user, as they are typically more interested in the average behaviour of all users.

Case 2: Virtual shopping mall. In another scenario, a virtual shopping mall provides an immersive and interactive
environment, allowing shoppers to browse and purchase products from the comfort of their homes. This virtual
environment closely mirrors a real shopping experience. Shoppers utilize VR headsets and controllers to navigate the
mall, interact with objects, and even try on virtual clothing and accessories.
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In this context, the company is interested in collecting spatial interaction data, such as movements within the virtual
shopping mall or interactions with virtual shelves, to identify popular areas and modify the virtual environment to
enhance user engagement. However, akin to the first use case, while this spatial interaction data is crucial for improving
user experience, it could potentially be used to re-identify users, thus raising privacy concerns.

4 METHODOLOGY

In this section, we first introduce the background of differential privacy, followed by our method of applying differential
privacy onto 3D body motion data through (i) window slicing and (ii) converting the data into heat maps. Our approach
aims to safeguard data privacy while preserving its utility.

4.1 Background of Differential Privacy

Differential privacy [10, 11] is a formally recognized concept of privacy that can be mathematically validated for data
releases, which has been widely used in data protection [38, 39]. Unlike k-anonymity, which is a property attributed to
data, DP is a property attributed to algorithms. This implies that we can prove an algorithm’s compliance with DP
requirements. To assert that a dataset adheres to DP, we need to show that the algorithm used to generate it satisfies
DP’s principles..
Plain differential privacy. Formally, a mechanism M : D → R with domain D and range R satisfies (plain)
differential privacy if for all neighbouring datasets 𝑑,𝑑′ ∈ D and for all possible outputs 𝑆 ⊆ R it have

𝑃𝑟 [M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝑑′) ∈ 𝑆] . (1)

Specifically, two datasets 𝑑,𝑑′ ∈ D are considered neighbours if they only vary in the information of a single
individual. It’s important to note that M is usually a randomised function, producing multiple possible outputs for the
same input. As a result, the probability distribution describing its outputs is not a singular point distribution.

The crucial implication of this definition is that the output ofM will remain largely unchanged, regardless of the
inclusion or exclusion of any specific individual’s data. In other words, the level of randomness incorporated intoM
should be sufficient to prevent an observed output from revealing whether the input was 𝑑 or 𝑑′. For instance, if an
individual data is present in 𝑑 but not in 𝑑′ an adversary would be unable to determine which of the two was the input
to M. As a result, the adversary would have no means of determining whether an individual’s data was included in the
input data, let alone obtaining any detailed information about that particular data.

The privacy parameter or privacy budget in the definition is denoted as 𝜖 . It serves as a control to adjust the “degree
of privacy” provided by the mechanism. Smaller values of 𝜖 that should produce highly similar outputs for similar
inputs, thereby offering stronger privacy protection. On the other hand, larger values of 𝜖 allow for greater variability
in the outputs, resulting in reduced privacy.
Laplace mechanism. The most direct method to achieve DP is by incorporating random noise into the response. The
primary challenge is to add enough noise to meet DP’s requirements, while ensuring the answer remains meaningful
and not excessively distorted. To streamline this process, the DP field has developed fundamental mechanisms that
precisely outline the type and level of noise to be used.

Laplace mechanism [11] is a commonly used approach. Specifically, according to the Laplace mechanism, the
following definition ofM satisfies 𝜖-differential privacy.
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M(𝑑) =𝑚(𝑑) + 𝐿𝑎𝑝 ( 𝑠
𝜖
) (2)

where 𝑠 is the sensitivity of𝑚 which represents the amount of𝑚’s output changes when its input changes by 1 (recall
the neighbouring datasets 𝑑 and 𝑑′), and 𝐿𝑎𝑝 denotes sampling from the Laplace distribution with centre 0 and scale 𝑠

𝜖 .
Approximate differential privacy. In this study, we employ the notion of approximate differential privacy, also
called (𝜖, 𝛿)-differential privacy, which is commonly used in machine learning and defined as below.

A randomized mechanismM : D → R with a domain D and a range R achieves (𝜖, 𝛿)-differential privacy if, for
any pair of neighbouring inputs 𝑑 and 𝑑′ ∈ D and for any subset of outputs 𝑆 ⊆ R, the following condition is satisfied:

𝑃𝑟 [M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝑑′) ∈ 𝑆] + 𝛿 (3)

where the privacy parameter 𝛿 represents the “failure probability” associated with the definition. With a probability
of 1 − 𝛿 , the privacy guarantee provided is equivalent to pure differential privacy, while with a probability of 𝛿 , no
guarantee is provided. In other words, with a probability of 1 − 𝛿 , we have the inequality 𝑃𝑟 [M(𝑑 ) ∈𝑆 ]

𝑃𝑟 [M(𝑑 ′ ) ] ≤ 𝑒𝜖 . Due to this,
it is typically required for 𝛿 to be very small, usually less than or equal to 1

𝑛2 , where 𝑛 represents the size of the dataset.

4.2 Preparing Body Motion Data for DP

Outliers Dropping and Sequence Alignment. Due to individual differences among participants and varying temporal
lengths of 3D body motion data, we initially remove outliers and temporally align the sequences. Data falling outside
three standard deviations are considered outliers and are removed from the dataset. We use the Dynamic Time Warping
(DTW) method to align sequences, thereby preserving their distinct features. Specifically, we employ a function from
the ‘DTAIdistance’ library [8] to find values corresponding to the time length of the longest sequence and implement
dynamic alignment using our user-defined function.

Window Slicing. Window slicing is a prevalent technique for training machine learning models on time series spatial
data, operating on a rolling window with a predefined size, denoted as 𝑛, and a step size, denoted as𝑚. This method
iterates through each user’s data recording, generating new samples at each step. We use a window size of 𝑁 = 10 and
the step size of𝑀 = 1 for our training and validation set for the evaluation.

From an adversary’s perspective, the application of the window slicing technique involves a majority vote among
the labels of all sliced windows. This approach is frequently used as it enables the attack model to identify temporal
patterns and dependencies within the data, and potentially minimize noise or inaccuracies in the prediction.

Heat Map Conversion. Alongside window slicing, we explore transforming the 3D body motion data into heat maps.
This approach is frequently employed in the visualization of spatial data and consequently helps to preserve the utility
of the data.

Our proposed method comprises a series of steps. Initially, we calculate the range of data values on each axis, such as
the 𝑋 axis, represented by [𝑋𝑚𝑎𝑥 , 𝑋𝑚𝑖𝑛]. Subsequently, we define the resolution of the heat map as 𝑟 , which determines
the number of data points along each axis. By having 𝑟 data points on each axis, the total number of data points in a
heat map becomes 𝑟 × 𝑟 . For each sample 𝑥 ∈ 𝑋 , we determine its position within the heat map using Equation 4. The
"ceil" function, denoted as “⌈ ⌉”, is applied to round each sample’s position to the nearest integer, ensuring its placement
within the heat map grid.
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𝑥ℎ = ⌈ 𝑥 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
∗ 𝑟⌉ (4)

The value of each data point in the heat map is the number of samples that fall into the corresponding grid position.
This provides a measure of the density or frequency of occurrences at that specific location. Lastly, to ensure consistency
and comparability, we normalize the data values in the heat map to fall within the range of [0, 1]. This step facilitates a
standardized representation of the data across various heat maps.

Heat map utility: one disadvantage of converting body motion data into heat maps is the loss of temporal information,
limiting the analysis to spatial movement tracing and frequency information alone. However, as described in the use
cases earlier, the omission of temporal data when sharing with vendors or third-parties have little impact the data
utility. This is particularly true in scenarios such as virtual homes or virtual shopping, where the primary focus for
application vendors may be recording movement traces and identifying the most frequently visited places by users.
Similarly, in VR scenarios involving natural interactions like playing virtual archery, vendors may only need to collect
users’ average movement traces to analyse user behaviours and enhance the user experience of VR applications. Hence,
for these common use cases, heat maps provide sufficient information to vendors or third-parties.

4.3 Applying DP on Body Motion Data with Utility Preserved

We then apply different privacy mechanism onto both the original motion data and the converted heat maps. To
compare, we also conduct experiments applying DP on data with window slicing.
Differential privacy tool package. In this study, we utilize the IBM differential privacy library, Diffprivlib1 [17], which
offers a unified codebase and modular design making it particularly suitable for researchers conducting experiments
and implementing DP models. Specifically, we use Diffprivlib’s implementation of the Laplace mechanisms, initially
proposed by Dwork et al. [11]. This implementation also supports (relaxed) (𝜖, 𝛿)-differential privacy [18]. We leverage
these mechanisms to apply differential privacy to our data, ensuring privacy protection while retaining valuable
information.
Utility preserving. Often referred to as the privacy parameter or privacy budget, 𝜖 represents the maximum permissible
deviation between queries executed on two neighboring databases (𝑑 and 𝑑′), where 𝑑, 𝑑′ ∈ D differ by only one data
change (i.e., the addition or removal of a single entry, as per Equation 1). More specifically, when 𝜖 is smaller, outputs
generated for similar inputs must be very alike, thereby providing higher levels of privacy. On the other hand, when 𝜖

is larger, the outputs can exhibit greater dissimilarity, which leads to reduced privacy. Essentially, a smaller 𝜖 implies
that more noise must be added to adequately protect the dataset’s privacy.

While our primary objective is to utilize the Laplace mechanism to introduce noise and prevent the re-identification
of individuals in the dataset, we also need to consider the balance between privacy protection and data utility as
described in Section 3. To achieve this, we introduce a data utility threshold to control the level of noise added through
the application of differential privacy. This threshold helps us avoid excessive noise that could potentially compromise
the usefulness of the data while still ensuring an acceptable level of privacy.

Specifically, we can establish the data utility threshold empirically using quantitative or qualitative metrics, or a
combination of both. For instance, in the case of a heat map, a qualitative threshold could be defined as “the heat map,
after applying differential privacy, should still provide clear visibility of the users’ movement traces”. Based on this
qualitative threshold, we can further determine a quantitative threshold, such as “the Relative Squared Error (RSE)

1https://github.com/IBM/differential-privacy-library
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between the heat maps before and after applying differential privacy should be lower than 𝑡”. In our study, we identify
the optimal privacy budgets as the largest 𝜖 value that produce the output below an acceptable utility threshold, based
on the 𝜖-RSE chart.

5 EXPERIMENT SETUP

In this section, we introduce the datasets, user identification models, and the evaluation metrics used in our study.

5.1 Datasets

VirtualHome dataset. A technique for simulating household activities using programs, employing sequences of
atomic actions and interactions as a higher-level representation of complex tasks, was introduced by Puig et al. [27].
The proposed simulator, VirtualHome2, empowers users to generate a comprehensive dataset of activity videos with
detailed ground-truth information, facilitating the training and evaluation of video understanding models. An example
of an agent is watching TV which is generated by the simulator and demonstrated in Figure 1(a). In our study, we use
some interaction sequences as the simulator input and select all existed agents as the interacted subjects. Then, we
utilize the simulator to generating interacted videos and 3D spatial interacted data of virtual agents performing kinds
of tasks in household scenarios (i.e., 7 agents acting 852 tasks) and collect the data as our experimental dataset. For
example, in one scenario, multiple agents’ activities can be generated using the following description: “Go to watch TV
on the couch. Turn the TV off and grab the coffee pot. Put the coffee pot on the table and go turn the light on” [27].
We collect the motion data of the agents from their starting points to the TV, then to the table, and finally to the light
switch. Figure 1(b) illustrates that the movement track of agent male 1 in a 3D space. Since the head is the center of the
body and has more actions than other body parts, the position of data collection is the head of each agent. After that,
the results of the heat map conversion method is utilized on interacted motion data, which is shown in Figure 1(c). In
this scenario, we define the data utility as ‘the average motion trace of multiple users’, which could be collected by the
app vendor or third-parties for further data analysis.
Body Movement dataset. Liebers et al. [21] conducted a laboratory study involving 16 participants to investigate
the accuracy of user identification. The researchers simulated two task-driven scenarios using common VR games, i.e.,
Bowling and Archery. In these VR games, users engage in natural interactions with the game, based on their spatial
movement. An illustration of the Archery game to generate Body Movement dataset is demonstrated in Figure 2(a).
Spatial motion data was collected using a consumer-grade head-mounted display (HMD) and hand-held controllers.
Specifically, the data recording includes Euler Angles, timestamps, and motion stages as extended data features. These
features are set into distinct experimental groups to investigate their impact on identification accuracy. Furthermore,
researchers have introduced a novel normalization technique which is aimed at adjusting the height and arm length ratios
between users and virtual players. This adjustment is also a part of the experimental setup. In this study, researchers
argue that implementing the proposed height-normalization approach on spatial motion data only would generally
increase the identification rate. In our research, we adopt their dataset3 and particularly extract the users’ motion data
after body normalization applied. Figure 2(b) shows an example of body movement data in a 3D space; also, the heat
map converted results are shown in Figure 2 (c).

2The simulator is available at https://github.com/xavierpuigf/virtualhome_unity.
3The dataset is available at https://www.hci.wiwi.uni-due.de/en/publikationen/understanding-user-identification-in-virtual-reality-through-behavioural-
biometrics-and-the-effect-of-body-normalization/.
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(a) (c)

Agent_male_1 movement track Agent_male_1 X/Z dimension heatmap

(b)

An example of VirtualHome Dataset

Fig. 1. A visualization of one sample in VirtualHome dataset [21]: (a) the virtual environment, (b) an illustration of movement track,
and (c) the heat map conversion.

(a) (b)

Player-1 body motion curve in archery sport Player1 X/Z dimensional motion heatmapAn example of Body Movement Dataset

(c)

Fig. 2. A visualisation of one sample in Body Movement dataset [21]: (a) the virtual environment, (b) an illustration of movement
track, and (c) the heat map conversion.

5.2 User Identification Attack Models

As described in Section 4, we explore two approaches for applying differential privacy to 3D body motion data. In
concrete, we process the data with two different techniques (i.e., window-slicing and converting into heat map). Then
we conduct user identification attacks using two distinct models based on the features of the processed data. Specifically,
following the experimental setup in datasets and recent studies [21, 27], we apply a Recurrent Neural Network (RNN)
models on window-slicing data and Convolutional Neural Network (CNN) models on heat map data, respectively.
LSTM on window-slicing data. The LSTM model consists of three Long Short-Term Memory layers, and each layer
has one hundred units. The activation function is selected as the default ‘sigmoid’. Other hyper-parameters are set
as: 200 epochs, Adam optimizer, and 1e-4 learning rate. Additionally, a majority voting is applied to determine the
prediction label a sample. Specifically, according to the labels predicted on all sub-samples (a sample could be sliced into
several sub-samples during window-slicing), the most frequent label is assigned as the final predicted label. Due to the
Manuscript submitted to ACM
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specificity of the dataset, which includes repetitions over two days, we divided the data into two parts: the motion data
from the first day is set as the training set, while the data from the second day is set as the testing set. The advantage of
splitting the dataset by date is that it helps avoid high repeatability between each sub-sample after window-slicing
pre-processing.
CNN on heat map data. We establish a CNN network with two convolution layers and three full connection layer. In
each convolution layer, there is a pooling layer. In the first two full connection layers, we add a drop layer with 0.5
dropping rate. For each layer, we use ‘ReLU’ as the activation function. The output of the model is a 𝑛-dimension vector,
where 𝑛 is the number of users in the dataset. The model is trained on 80% of the samples and tested on the remaining
20% samples.

5.3 Evaluation Metrics

In our study, we evaluate whether a privacy-enhancing approach is capable of safeguarding users’ privacy while
maintaining sufficient data utility. We use the following two metrics in experiments.
Relative squared error (RSE). To measure and control the error introduced by differential privacy, we utilize relative
squared error (RSE) to calculate the average squared difference between the original data and the DP-enhanced data. The
output value of RSE is expressed in terms of ratio. Specifically, as formalized in Equation 5, RSE calculates the relative
squared error, which normalizes the total squared error (i.e., MSE) and normalizes it by the square of the difference
between the actual and the mean of the data.

𝑅𝑆𝐸 =
1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑖 )2∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑖 )2 , (5)

where 𝑥𝑖 is a data point from spatial data or a heat map, 𝑥𝑖 is the mean of all data points, and 𝑥𝑖 is the corresponding
data point after applying DP. A RSE value can range from 0 to 1. A good model should have a value close to 0 while a
model with a value greater than 1 is not reasonable.

The reason we use RSE as the error matric is because it is less influenced by the total data volume, compared to Mean
Squared Error (MSE). Specifically, for window-slicing data, we directly compute two motion average curves between
the temporal dimension and each dimension of feature, both before and after applying DP (i.e., calculating the average
curve by x-dimension data of the headset and time stamp); for heat map data, we calculate RSE between two 100*100
images.

Specifically, we use RSE as a quantitative threshold of data utility, to ensure that the data is still usable after applying
DP onto it. The threshold of RSE will further determine the privacy budget 𝜖 which controls how much noise would be
added to the data. For example, we can select the Relative Squared Error (RSE) threshold according to the specific utility
scenario. A default threshold could be set at 1, and the smallest value of 𝜖 that can meet this threshold will be chosen
for different privacy settings. For convenience in practice, we round up the value of 𝜖 to an integer. For example, if a
chosen value of 𝜖 is 6.4, it will be rounded up to 𝜖 = 7.
Identification accuracy. To evaluate the data privacy performance against user identification attacks, we utilize
identification accuracy as the metric. As illustrated in Equation 6, the attack accuracy is defined as the number of user
classifications the attack model correctly predicts divided by the total number of predictions made. Specifically, a lower
identification accuracy indicates higher robustness of data privacy. If the accuracy of a user identification attack falls
below that of random guessing (i.e., below 50% in a binary classification), we classify the attack as failed and consider
the data privacy to be robust.
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Fig. 3. Qualitative evaluation of data utility (an example from VirtualHome dataset). (a) original data and corresponding heat map;
(b-d) data visualization after applying Laplace differential privacy with 𝜖 = 1, 3, 10, respectively. Higher privacy budgets introduce less
noise into the data. To maintain the data utility, a privacy budget higher than 3 should be selected, since when 𝜖 = 3 the noise level is
still high.

𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(6)

6 EXPERIMENTAL RESULTS

In this section, we present the experimental results of the data utility evaluation and the performance of our approach
in protecting privacy against user identification attacks.

6.1 Data Utility Evaluation

We first evaluate the data utility through both qualitative and quantitative manners.
Qualitative data utility. As previously described in Section 4 and 5, we first evaluate the data utility through a
qualitative method. This involves ensuring that the movement traces are still clear and recognizable to the human eyes
after adding differential privacy noise. We demonstrate the data utility by plotting the original spatial data in x/z space,
along with its corresponding heat map.

Specifically, to compare the data utility in different 𝜖 settings, we randomly select two samples from each dataset and
plot their spatial data and corresponding heat maps, as shown in (Figure 3(a) and Figure 4(a)). Then compare with data
with differential privacy applied. This is done for 𝜖 settings of 1, 3, and 10, as shown in Figure 3(b-d) and Figure 4(b-d).
From the experimental results, it is evident that higher privacy budgets (e.g., when 𝜖 = 3 and 10) introduce less noise
into the data, which is expected as higher privacy budgets are applied.

Here we note that, in practice, the purpose of conducting qualitative utility evaluation is to obtain an approximate
proper range of 𝜖 , to saving computational cost in the quantitative utility control, since a proper utility threshold
may lead to selecting a very large or small 𝜖 in specific cases. For example, an 𝜖 value in the range of 3 to 10 provides
sufficient data utility in VirtualHome dataset, while an 𝜖 value less than 3 introduces too much noise, making it difficult
to recognize the body movements or the visiting trace in the virtual home.
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Fig. 4. Qualitative evaluation of data utility (an example from Body Movement dataset). (a) original data and corresponding heat map;
(b-d) data visualization after applying Laplace differential privacy with 𝜖 = 1, 3, 10, respectively. Higher privacy budgets introduce less
noise into the data. To maintain the data utility, a privacy budget around 3 could be selected, since when 𝜖 = 3 the noise level is
acceptable and a stronger privacy protection can be pursued.
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(a) Window-slicing on VirtualHome
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(d) Heat map on Body Movement

Fig. 5. RSE between the original data and the differential privacy-enhanced data with various 𝜖 settings. The query is the averaged
user visiting trace.

Quantitative data utility controlling. Based on the qualitative results, we further determine the data utility using
RMSE thresholds. In Figure 5, we present the RMSE between the original data and the differential privacy-enhanced
data with various 𝜖 settings. Specifically, we vary the values of 𝜖 from 1 to 10 with a step size of 1. It can be observed that
the RMSE decreases as 𝜖 increases. Moreover, there is an elbow point in the RSE-𝜖 curve, indicating that an appropriate
RSE threshold could be chosen near this point. In this region, increasing 𝜖 has less impact on the MSE, allowing us to
select a privacy budget that is sufficiently tight.

According to Section 4, we selected a threshold of 𝑅𝑀𝑆𝐸 ≤ 1 near the elbow point for our experiments, which led
to different values of 𝜖 being chosen (i.e., 𝜖 = 4 for window-slicing data and 𝜖 = 7 for heat map data). This difference
arises because, when applying differential privacy to heat maps, perturbations are introduced to all points in the heat
map (in our case, 100*100 points); whereas differential privacy applied to window-sliced data only introduces noise to
individual time series data points, resulting in a smaller amount of noise being added with the same privacy budget,
compared to the heat map case.
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Table 1. Privacy enhancement against user identification attack.

Methods Models

User Identification Accuracy

Original
Privacy Enhanced with Differential Privacy

𝜖 = 0.5 𝜖 = 1 𝜖 = 2 𝜖 = 5 𝜖 controlled by
utility threshold

Window-slicing LSTM 93.89% 27.15 36.51 53.07 75.91 48.03%
Heat map CNN 96.53% 14.09 24.83 63.09 87.92 55.37%

6.2 Privacy Performance against User Identification Attacks

We further evaluate the privacy protection performance of applying differential privacy to window-slicing data and
its corresponding heat map. We conduct user identification attacks on the original data and privacy-enhanced data
using various privacy budget settings (i.e., 𝜖 = 1, 3, 10), as well as an 𝜖 value selected based on the data utility threshold
determined in the previous experiments.

As shown in Table 1, the attack success rates experience a significant drop when differential privacy is applied. For
instance, in the VirtualHome (Body Movement) dataset, the identification rate decreases in the range of from 41.16% to
45.86% (from 22.44% to 27.09% ), compared to the baseline attack success rates when no privacy enhancement is applied.

7 DISCUSSION

Our findings demonstrate that DP can effectively mitigate the risk of re-identification attacks, while still preserving
the utility of understanding average 3D body motion. This balance between privacy and utility is crucial in various
applications. For instance, in gaming, understanding players’ body motions can lead to enhancements in the gaming
experience. Similarly, in a virtual shopping context, understanding shoppers’ movements and interactions can help
improve the virtual shopping experience. Thus, the application of DP not only ensures user privacy but also contributes
to the refinement of user experiences in virtual environments.

Our result also suggest that the transformation of a user’s 3D body motion data into heat maps can effectively
enhance user privacy. When the same privacy budgets are assigned to both the raw 3D body motion data and the
heat maps, the heat maps approach can incorporate more noise into the data, thereby increasing the level of privacy
protection. Importantly, this increase in noise does not significantly compromise the utility of the data. This means that
important patterns and trends within the data can still be identified, which is vital for analyzing user behaviour and
improving virtual experiences.

8 LIMITATIONS AND FUTUREWORK

In this study, we utilized two VR application datasets to investigate user visiting tracing in virtual home scenarios and
body movement in an interactive VR game. Although our choice of datasets is limited, we acknowledge the inherent
limitations in terms of representing the entire scope of VR scenarios. It is important to note that the field of VR is vast
and diverse, encompassing various applications and user interactions. Despite such limitation, we contend that our
approach holds general applicability across a wide range of scenarios involving the collection of users’ spatial data.

Another limitation of our study could be the number of attack models involved in the experiments. We acknowledge
that there exist more complex models that could be used for user identification attacks. However, the primary goal
of our study is to demonstrate that the application of differential privacy mechanisms can significantly reduce the
Manuscript submitted to ACM
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success rate of user identification attacks, thus enhancing user privacy. In future research, we aim to conduct more
comprehensive investigations into how the complexity or structure of attack models can influence privacy protection.
This includes exploring whether a more complex privacy protection method or a tighter privacy budget is necessary
when facing stronger attack models.

Additionally, it is crucial to explore the delicate balance between data utility and privacy protection. For example,
collecting the user’s gait and other biosignals could help us assess attention [36, 37], predict VR sickness [7], or detect
stress levels [40] for early intervention. Further studies can shed light on how to optimise this trade-off and develop
strategies that effectively preserve data utility while ensuring robust privacy protection. By addressing these aspects,
we can advance the understanding of privacy protection in the context of VR applications and offer valuable insights
into the design of more resilient and efficient privacy-preserving mechanisms.

9 CONCLUSION

We present a research study focused on the application of DP to 3D body motion data within VR applications, with the
goals of preserving both user privacy and data utility. We discussed and evaluated two potential use cases - VR gaming
and virtual shopping - using both synthetic and real-world datasets. The results indicate that our proposed heat map
method surpasses the direct application of DP. These findings underscore the viability of our approach and advocate for
further research into privacy-preserving techniques that do not compromise data utility in VR.
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